Improved Crank-Nicolson method for modelling diffusion of electromagnetic fields in hysteretic soft magnetic laminations
نویسندگان
چکیده
منابع مشابه
An ETD Crank-Nicolson Method for Reaction-Diffusion Systems
A novel Exponential Time Differencing (ETD) Crank-Nicolson method is developed which is stable, second order convergent, and highly efficient. We prove stability and convergence for semilinear parabolic problems with smooth data. In the nonsmooth data case we employ a positivity-preserving initial damping scheme to recover the full rate of convergence. Numerical experiments are presented for a ...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملAlternating Group Explicit-Implicit Method And Crank-Nicolson Method For Convection-Diffusion Equation
Based on the concept of alternating group and domain decomposition, we present a class of alternating group explicit-implicit method and an alternating group Crank-Nicolson method for solving convection-diffusion equation. Both of the two methods are effective in convection dominant cases. The concept of the construction of the methods is also be applied to 2D convection-diffusion equations. Nu...
متن کاملAn ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...
متن کاملCrank-nicolson Finite Difference Method for Solving Time-fractional Diffusion Equation
In this paper, we develop the Crank-Nicolson finite difference method (C-N-FDM) to solve the linear time-fractional diffusion equation, formulated with Caputo’s fractional derivative. Special attention is given to study the stability of the proposed method which is introduced by means of a recently proposed procedure akin to the standard Von-Neumann stable analysis. Some numerical examples are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Interdisciplinary Mathematics
سال: 2018
ISSN: 0972-0502,2169-012X
DOI: 10.1080/09720502.2014.1001555